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CHAPTER 1

INTRODUCTION

Periodic tuning is a virtually essential aspect in the maintenance

of almost any physical plant. One method of such tuning is that known as

sensitivity points turning method. The theory of this method and application

to single-input/single-output (SISO) systems have been fairly well developed.

This studyinvestigates the application of sensitivity points turning concepts

to the tuning of multi-input/multi-output (MIMO) systems.

The concept of sensitivities in feedback systems was originally

introduced by Bode in the 1940's [1]. Methodologies for using sensitivity

information for optimal tuning of system parameters date back to the late

1950's and early 1960's and include work done by Meissinger [2,31J Margolis

and Leondes [4,51, and numerous others (see [6,7])'. These works all involve

the use of system sensitivities in order to provide a searchless means of

computing the gradient of a given cost function which possesses some

extremal value that is related in some way to some desired characteristic

performance of the system under tuning.

Included in this class of optimization techniques are the iterative

parameter optimization techniques, such as those of Meissinger [2,3], Brunner

[8], Roberts [9], and Kokotovic [101. The choice and generation of pertinent

sensitivities for use in such techniques are topics treated in works by,

among others, Kokotovic [10], and Wilkie and Perkins [11,12]. The sensitivity

points tuning process, developed by Kokotovic [10], is an iterative process

which obtains sensitivities in a straightforward manner and then adjusts

parameters in an optimizing fashion.

t°3



2

1.1. Sensitivity Points Tuning Concepts

Consider the system depicted in Figure 1. In this arrangements

which occurs frequently in practical applications of control systems,

compensator blocks K1 (ais) and K2 (ais) of known structure are used for

. control of system blocks Wl(s) and W 2 (s), whose structures need not be

necessarily known.

For a given input r(s) and some small deviations At and A6.

0 0
from some nominal parameter values a. and . respectively, a Taylor series

expansion of the output response yields

Sy(cOt + Act. , . + A3. , S)

0 0 a 0
y(. . s) + E - y(c i , s)Aa. +

1 Y ' J ' i=l i 1 1

m a
+ E y( . (1)

j=l j J J

where

y(aS) A sensitivity of the output y(ai,3,s) with respect
oct. 0

1 0
to the parameter a. at a. = a., and

1 1 1

D6y(gjs) = sensitivity of the output y(iS s ) with respectJ 0

to the parameter a. at 3. a .

Note that (1) may be rewritten as

0 0 S
y~ct + ct., 0 + A3. ,s)

y1( + a i  J J

0 0 0

= .Y(i 3 1 s) + 7v(c i , , s) Ac + .

0 0(2
+J ( i  ,3. , s) • A3 + .. .()

. 4 .
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where

1 m. Ta [a1  ... cc]

and

A= [AS I  ASmiT

If the expansion is truncated at the first-order term and

0 0
y(ai,Sj,s) is taken to be the nominal response of the system, then the

1
derivation of the system responsey(ai + Aci,S. + AS.,s) from the nominal

0 0
response y(aB,,s), denoted as the error e(s), may be approximated by

0 0
e(s) 7Vy(a , s ) , A

0 0],.4
+ 3Y(a 0  0 )-A (3)

0 0
If a = a + Aa, 3= B + AS, and Aa is known to be small, then

the approximation in (3) may be rewritten as

e(s) -- y( , s)

+ V y ( t , L , s) AS (4)

The approximation made in (4) implies that knowledge of the

sensitivities d y(ai,s) and y(5,s) would allow one to approximate

appropriate values of Aa. and AS., subtract them from the values of a:
1 1

and 3: resident in the system, and reduce the amount of error e(s). The
J

resultant e(s) would have a magnitude approximately that of the higher-

order terms ignored in the approximation of e(s) made in (4). The magnitude

.-. ., . . .• . -



of this resultant e(s) would be, therefore, smaller than that of the original

e(s). Repetition of this process through several iterations should reduce

the magnitude of e(s) to some minimal value (the presence of measurementI

noise may make it impossible to reduce the magnitude of e(s) to zero).

* Note that, due to the Laplace integral's property of differentiability

with respect to system parameters, this process is also directly applicable

in the time domain.

The sensitivities required for this procedure may be obtained in

the following manner. Refer again to the system diagrammed in Figure 1.

The system transfer function and sensitivities are

V('11$3 9s i~)i.~s) r(s) (5)

~ ~1 s 1 - l l 2 2 : 2 K (a',s)- r(s)

(I1 1 1,) .,Is)W (s)K W'3s)) (1 +a W i K c 1 1

W ( S)y K (Ot S)

+ r 1 ~ (s)

1 1

I + W1 (s)K1 (aC, s)W (s)K (,-,s) K- (aC S)

+W (s)K (a±{s)W (s)K (0,s Th. 1 GI -

1 1 2 2 S)) (7)

C:C
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(1 W(s)K (C',S)W (S)K3S) j

1+ (S W1 sK(~~) 2 (KS)K2(fj r5

1- + W(s)K (c',s)W (s)K 0',s))s

aI

2 2 1

W (cKKs)01. j

- "1

1 W K(cxs)W sK( S) y(s)K 2 (S)s)

Wn(S Kl ( iS) 9)"

W W (S)K (a : s)()2B s) W2s jK(js) a i o

WI~ (s)KI ((is)
1+ W (SlKI(Cts)W2(slK2(B s) 2 W 2( K2B')' -

2 '

The reason for using the sensitivity filters s)Zn K (cs) and

. n K2(3',s) in (7) and (9), respectively, instead of K- Kl(ci,s) and

K K2(S,s), as in (6) and (8), is to avoid using higher-order sensitivity

filters when the parameter is in the denominator of the compensator transfer

function.

Example: Let

2.' f (s)

K(B3,s) (10),- p

S

..........................
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where f (s) and f (3Js) are polynomials in the Laplace operator describingz p ]

the zeros and poles, respectively, of K2(Bis) Then
2

f (s)

K 2(j's) = " Z 8 (II)
3 (f (B.s)) (

where

-- Z Zn K 2 (6K,s) = K S) DB K 2(3 is)

sz (S 3
S(-)f (F ,s) (12)

f(W,s) 3d. p j
P j

The order of the filter in (11) is lower than that in (10) bv the order of

* ( ,s)
P j

The signals described in (7) and (9) may be obtained as diagrammed

in Figure 2. The points S and S 2 are known as the "sensitivity points" of

the system at which appropriate signals may be easily picked off for use in

calculating sensitivites.

1.2. Parameter Deviation Estimation

The approximations of the parameter deviations li. and Th. may be1 .

obtained in any number of ways in order to satisfy whatever error minimization

criteria that are specified. One of the more common tuning goals is that of

finding La. and _'?. to minimize the magnitude of difference between the

system response and a nominal reference response over the entire response

period T . For this purpose, one may use a very common cost function; namely,

R,

i , ~~~~......... -Tl-.-....................'.," ,.- .:-.f. .- . , .......... i: .. ..-.--.............
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that of rms error over the specified response period. The cost function

may be expressed as

T
R2

J = f (e(t)) 2dt (13)
0

In discrete time, (11) becomes

N 2
J = E (e(kT)) (14)

k=0

where NT T
R'

Now let

r] = and Ay

If a time-domain analogy is made of the error approximation

expressed in (4), the tuning goal in each iteration becomes that of finding

N
AY arg min [ Z (e(kT) - Vy y(oiijkT)Ay2]) (15)

Ay k=O

in discrete time, or

-
TR

y = arg mrin[ f (e(t) - V (aiISt)-6Y) dt] (16)
A'y 0

in continuous time.

If data processing were to be performed by a digital computer or

microprocessor, the tuning objective in each iteration would be that stated

in (15), which may be interpreted as a minimization problem in a Euclidean

vector space of order N+l. In this context, (15) may be written as

*
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A* - arg minJJSA' -'*'Il (17)

Y A 1]'.,where Ay

V. Y y(ai, ,to)

S - yY(cis, kT)

LAY y(ai j ,NT)

and

e(O)

P = e kT)

:":o -e( NT) J

The solution for (17) may be given by

*= T -1iT
Ay (S S) Sj (18)•- -l

if (s S) exists (implying that no linear dependencies exist between the

*columns of S) [13]. Note that for n+m< 2, (18) always applies; for

n+m> 3, the possibility of linear dependencies between columns of S arises

and a more complex computation than (18) must be undertaken in order to

ensure that a suitable solution to (17) may be obtained.

1.3. Notes

Up to this point, this discussion has mentioned only the use of a

first-order method of parameter approximation. Higher-order methods for

approximation may be used [14], but generally do not yield significantly

,,4% o

.- ....° o- .. - *
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superior performance. In addition, higher-order methods usually require

longer computation times in each iteration.

A second, more important point to be made here is that the

sensitivity model used to obtain the pertinent sensitivities need not be -

the system itself or a copy of the system, as might be inferred by (7) and

(9), and as depicted in Figure 2. If a full model of the system is

available (in either digital or analog form), this model may be used as

the sensitivity model. In addition, since the parameter deviations of

interest are only being approximated at each iteration (as opposed to

one single exact calculation for the entire process), a sufficiently

descriptive reduced-order model may be substituted as a sensitivity model

if the full-order model of the system is inappropriately large or too

complex for such use. If the reduced-order model is well-chosen, the

performance of the sensitivity points tuning process will not be significantly

degraded by such approximation. If the chosen reduced-order model is suspect,

however, two changes may be made to the procedure outlined above in order

to reduce effects of using such a mode.

i. The sensitivity point may be located in the original system, as

depicted in Figure 3, instead of the reduced-order model, whereupon only the

input and output of the reduced-order sensitivity model need be accessible.

This eliminates the need for the internal structure of the sensitivity model

to be identical to that of the system. Matching only of input-output

caaracteristics of the sensitivity model and system would, therefore, be

surfiient in formulating a viable sensitivity model.

L|-ri~et frmltn

I . . . . . .
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2. The estimation of the parameter deviation vector Ay may be

made using a steepest descent estimate of the form

T cxAY* =S P cE IR

instead of the least-squares solution given in (18). This update form is

less sensitive to inaccuracies in the sensitivity matrix S. In addition, if

c is appropriately chosen, this steepest descent update will tend to have

faster initial convergence. One disadvantage of this form is that, with

constant c, the updates may oscillate about the optimal solution. One

possible solution to this problem is to utilize the steepest descent

estimate for several initial iterations, and then use the least-squares

estimate when in the neighborhood of the optimal solution in order to ensure

convergence.

1.4. Subjects for Discussion

In the ensuing discussion, the concepts of the sensitivity points

method will be extended to apply to multiple-input/multiple-output (MIMO)

systems. The Mimo sensitivity points method will then be used to examine,

first of all, techniques of tuning MIMO systems in a rather general sense,

and, then, the applicability of the sensitivity points method to decentralized

tuning of MIMO systems. Examples and simulations will be included to help

illustrate points to be made. Finally, an example of a realized system will

be given and discussed.

[,~
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CHAPTER 2

SENSITIVITY POINTS TUNING IN MULTI-INPUT/MULTI-OUTPUT SYSTEMS

In this chapter, the sensitivity points tuning concepts described

in Chapter 1 for single-input/single-output (SISO) systems will be extended

to apply to multiple-input/multiple-output (MIMO) systems. Techniques for

sensitivity points tuning of MIMO systems will then be discussed.

2.1. MIMO Sensitivity Points

The deviations for the sensitivities of MIMO systems progress in a

manner quite similar to that described in Chapter 1 for SISO systems. Consider

the very general MIMO system depicted in block diagram form in Figure 4.

This system has an input vector R(s) of dimension dR; output vector y(a,B,s)

of dimension d ; system feedforward block Wl(a,s) with transfer function

matrix of dimension d x dR) and with adjustable parameter vector

T
a= [Il,.,n]T; and system feedback block W2 ( ,s) with transfer function

n 2.

" matrix of dimension d R x d and with adjustable parameter vector

T
= [l,...' m ]

. The transfer function of the system is

y(ct,4,s) = [I + W (cts)W2 (3',s) ,s)R(s) (19)

ro If one were to follow a notation convention analogous to that used

in the SISO sensitivity derivation, one would find the corresponding MIMO

sensitivities to be

4-.
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_ Ti
[I + a sW B') (a's E W ( s)W2 (20))

1 2

Y(U"S" * [I + W (as)W(Os)] W (c<s)W IS

1 - 1 2

( I + W (Ct',S)W 0 's)] W - ( ±, s)Rs
1 2 1

I + W (C~s)W ($,s) Ls) WEWs) (20" )

(21

wheretonfrotiin h inasdsrbd y(0 n

(21) E s) da ramme in F ie .s f newee o efrac t tes

rad aindpce nFgr ,oewol e htacmuaino h

senitviy iler ndsesiivtymodl n igre2 wul rsut-1

degneatefor of [Ie relzto W(V s howns) in G~s Figure 5.

alloralzaio for tepamntob utinnle igals desried bypu (20 and
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sensitivity model. Sensitivities with respect to several different parameters

may, therefore, be obtained simultaneously. Since no such commutativity

exists in the MIMO case, however, and since only one input vector signal

may be applied to the sensitivity model input at any time, only the

sensitivities with respect to one parameter will be generated at any given

time. This parameter is the parameter corresponding to the sensitivity

filter in use. If the sensitivities with respect to p parameters are desired,

then the process of inputting y(s) (or E(s), depending upon which is

applicable) into a sensitivity filter-sensitivity model pair must be

executed p times.

If one were to use the MIMO system depicted in Figure 6, one

would find the system transfer function to be

y(a,,s) [I + WI(s)K1 (cXs)W2 (s)K2 (Bs)] 
1 (s)Kl(ts)R(s) (22)

The corresponding system sensitivities would be

. y(cz'3,s) = - [I + Wl(S)Kl(ats)W2(s)K2('s)]
11

W (s) - Kl(cOs)W2 (s)K2 (Ws)
1

[I + Wl(s)Kl(zs)W2 (s)K2 (3,s)]- Wl(s)Kl(cr,s)R(s)

+ [I + WI(S)KI( W,s)W2(s)K 2 ( ,s)] -lW(s) y Kl(c&,s)R(s)
1

= [I + Wl(s)Kl(cr,s)W 2 (s)K2 (,s)] W(s) Kl(t',s)E(s)
1

(23)

,S
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where

E(s) = R(s) - (s)K2(V's)y(C(,5"s )

and

Z y(ats) = - [I + W1(S)K1(a's)W2(s)K.(Ss)]-i

* Wl(s)Kl(a,s)W2 (s) -. K2 (B's)
J

1 2-1

* [I + W1 (s)K1 (a,s)W2 (s)K2 (S,s)] W1 (s)Kl(ct,s)R(s)

- [I + W 1 (s)Kl(CL,s)W2 (s)K2 (,s)] - W1 (s)K1 (,s)

W2 (s) -- K2 (3,s)y(t,B,s) (24)

A realization for obtaining the signals described by (23) and

(24) is diagrammed in Figure 7. An alternate realization of (23) and (24)

is shown in Figure 8. The attractiveness of this alternate realization

lies in the fact that the system itself may be used as the sensitivit" 1odel

without any modifications such as the addition of auxiliary inputs shown in

the realization of Figure 7.

In addition, if a reduced-order model were to be used as the

sensitivity model, it would only need to match the input/output

characteristics of the system.

Use of the alternate realization, however, is limited to those2

-l
systems where K (a,s) exists and is realizable, and where 4 L) is

readily replicable. In either case, as in the more general realization

shown in Figure 5, a lack of commutativity implies that only the sensiti'itt.-'
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R with respect to one parameter may be obtained at any one time, since only

a single sensitivity filter may be used in series with the sensitivity

model, One possible solution to this problem would be to use multiple

- sensitivity models (or multiple approximate sensitivity models), which

would allow for the extraction of sensitivities with respect to as many

parameters as the number of sensitivity models used.

2.2. The MIMO Sensitivity Filter

At this point, it may be appropriate to discuss the interpretation

of the MIMO sensitivity filter, K(.,s). In the SISO case, realization

of the sensitivity filter amounted to, quite simply, the realization of an

SISO transfer function. In the MIMO case, however, the transfer function of

the sensitivity filter is a matrix K(-,s) whose elements may be denoted as

K. (-,s) (i denoting row assignment, j denoting column assignment);

K(',s) is simply a matrix of the same dimension as K(',s) whose

i-j-th element is K ij(,s).

Example: Let

r""

1 2 3

6 ? i
0 '-I

then

0 0 o-0

- K( ,s) = 1 0 0

.0 0 0
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and

0 0 0
" K(&,s) 0 0 0

P0 _(s+0) 2 _

The realization of this is quite straightforward: for each i and

j, take the jth element of the signal drawn from the system, pass it through

a filter whose transfer function is K ij(',s), and input the resultant

signal as the ith element of the input vector for the sensitivity model. If

K(.,s) contains multiple elements in its ith row, one must, quite simply,

sum the signals emanating from those filters corresponding to elements in the

ith row of K(.,s) and use this summed signal as the ith element of the

input vector to the sensitivity model.

*'i 2.3. MIMO Parameter Deviation Estimation

The basic concepts described for the estimation of parameter

deviation in the SISO case are still applicable in the MIMO case. The

basic task is still that of finding

A = arg mi ISA, -vI]

In the MIMO setting, however,

I.

k . ., .-" .-." .i ' .-" i -. ' .' 2 ., .." ." ; --..i ' , ...-., " " 2 -., "
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V y y 1 W,V,NT)

y y2 (cOo,0)

S Vy 2 (zNT

y

d (c",SN)
y

and

ei(0)

(NT)

e (0)

e (NT)

e d (0)

e d (NT)
~-y

where

e 00'
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With S and ii defined in this fashion, Ay may be estimated with

the same methods used in the SISO case.

It should be noted at this point that none of the outputs need

necessarily be tuned with respect to all parameters. If, for instance, one

. wished to tune output yi by using all parameters in y except for some Bj,

all that one would need to do would be to set.- yi(t) = 0 for all
3I

t= [0,TR]. This would set y. (t)A . = 0, meaning that it would have

no effect in the tuning process. The estimation would, therefore, ignore

Aaj in approximating Ay

2.4. MIMO Tuning Techniques

If one were to assume that the MIMO system to be tuned was, in

fact, a network of SISO or MIMO subsystems, then tuning techniques would

fall into two general categories: centralized tuning and decentralized

tuning.

2.4.1. Centralized tuning

In this scenario, subsystems of the overall system are interconnected

by inter-subsystem feedback as well as any coupling inherent in the plant. As

depicted in Figure 9, the main purpose of a centralized tuner would be to

* maintain the inter-subsystem feedback elements in a way that would assure

overall system stability. These particular feedback elements have less effect

on subsystem dynamics than local feedback elements, but may become important

if inherent coupling is strong. Otherwise, a perturbing input to one

.J., ... ;. . " " - -- ' . i . " _ ' ' --.. ' 2 " '° 2.- . ' - ' i ..-' ' . -.- ' " i : . " " . . i " i .
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subsystem may excite resonances in some less-damped subsystems via inherent

coupling, which may then result in loss of overall system stability.

Example: Magnetic supension system. Consider the magnetic suspension

system sketched in Figure 10. The objective is to maintain the bar at a

nominal distance h and to keep it level. The linearized state equations
0

of the system are

[0 1 0 0 6x1 0 0

,5A 2b 0 -b 0 6x -e -e
X 30 0 0 + x 0 0 0 LJ
x4 _J -b2b 0] L6x~ 4e -

and

Lo 1 0 ] 0

y 0Y 0 1 0]
L 2]

where

2=Lq + 3Lq

2Lq-3Lq

h L m
0

and b
h

Notice that the system may be treated as two weakly coupled sub-

systems. Note also that these subsystems appear in the system matrix as

diagonal blocks, which allows for a feedback controller matrix of the form

• - : i , _, .- . . ... .. . . . . . . . ~ ~~~. ./:." . . - , _,, . - , _ , ,.
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k1 2 I k k1I11 2 113 141
K . ... 4 -------Lk k2  k k

21 22223 24'

In this controller form, those elements in the diagonal blocks are associated

with local feedback and the off-diagonal elements govern cross-feedback.

Assume now that a= 1, m 2, g= 1, h =1, L= 2, and that the sampling interval

is 50 msec. Assume further, for the sake of simplicity, that k =k 23= 0.9,

k12 =02 and k14 k22 =0, so we will be tuning with just the two cross

feedback elements k and k This describes an unstable fourth-order
13 21'

system. Computer simulation will demonstrate that, for a step disturbance

applied to subsystem 1 with k k -l, this system is unstable. Tuning
13 21

k13 and k2 1 by the sensitivity points method with a second-order reference

step response (poles at s=-2±j3.46) results in convergence of k and k
13 21

to stability in 12 iterations. Responses change from unstable to 32%

overshoot in y1 and 150% overshoot in Y2 (tuning inputs: unit step into

subsystem 1 (left), half step into subsystem 2 (right)). The tuning history

of this particular run is given in the Appendix as Table I. The effectiveness

of a centralized tuner is, therefore, quite clear and may be critical, as

demonstrated by this simple example.

2.4.2. Decentralized tuning

Consider now the problem of decentralized tuning at each subsystem.

In contrast to centralized tuning, local tuners may use only locally

available signals for the tuning process, as depicted in Figure 11. This

implies that the task of local tuning is limited to the tuning of onlv local
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compensators (which may be in either the feedforward or feedback path).

Consequently, only those parameters in the local compensators need be

tuned.

One major issue in decentralized tuning is whether or not exact

tuning is possible from the local level. If the full model of the overall

system is available to the subsystem as a sensitivity model, such tuning

is possible.

In order to visualize why this is true, assume that the transfer

function matrix of the system may be written in a form such that each

subsystem lies within a block on the main diagonal. This would result in

the placement of local compensator terms in blocks of the main diagonal

of their respective transfer function matrices, which would correspond to

the location of their respective subsystem blocks in the main system

transfer function matrix. The structure of the MIMO sensitivity filter

(discussed in Section 2.2) would, then, ensure that only local signals

would be needed for local tuning, irrespective of the level of coupling to

other subsystems and irrespective of inputs to other subsystems. This

implies that, if the full model of the system is available as the sensitivity

model, no approximation of sensitivities will be made; the exact sensitivities

described in (20) and (21) (or (23) and (24)) will be generated instead.

Availability of such exact information ensures that exact tuning from the

local level is, indeed, possible.

Irrespective of whether or not a full system model is available as

a sensitivi:v model, decentralized tuning may be performed under any of

several schemes. All of such schemes, however, seem to be one or the other

or a combination of two basic methods.
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1, Alternating tune-up. In this scheme, subsystems are individ-

ually tuned one at a time. If the subsystem to be tuned is treated as a

SISO system, it may be tuned by the SISO sensitivity points tuning procedure.

All other subsystems are assumed to be at some respective operating point,

but no assumptions are made about the inputs to those subsystems not being

- tuned,

2. Joint tuning. In this scheme, the entire network of subsystems

is treated as one large MIMO system. Each subsystem is given its own tuning

input, and all inputs are applied together as the input to the MIMO system.

All subsystems are tuned simultaneously; the overall tune-up time for the

entire network may, therefore, be reduced.

Computer simulations using these schemes were performed with various

permutations of step and delayed-step inputs and confirmed that exact local

tuning can be performed. Tuning histories for these two schemes are given in

Tables II and I1l of the Appendix.

- 1
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CHAPTER 3

DECENTRALIZED TUNING OF MIMO SYSTEMS
WITH SIMPLIFIED SENSITIVITY MODELS

Given an MIMO system, consisting of coupled subsystems, consider

again the problem of decentralized tuning of individual subsystem controller

sections. As depicted in Figure 11, local tuners have only locally available

signals for tuning information.

It has been established in Chapter 2 that, using the MIMO sensitivity

points tuning procedure, exact local tuning at a particular subsystem may be

0 obtained irrespective of coupling or of the size and timing of inputs to

other subsystems if a full model of the overall plant is available at the

subsystem for use as a sensitivity model. Such a full model, however, may

not be readily available for such use. The problem to be addressed, then,

is whether or not a subsystem can be satisfactorily tuned if only a greatly

simplified model of the overall system is available for use as a sensitivity

model.

In order to assess limitations of decentralized tuning with

simplified sensitivity models, three tuning situations have been examined.

1. Tuning with the rest of the plant tuned. In this case, the

subsystem of interest is tuned up from some detuned state, while all of the

other subsystems in the plant are operating at their respective fully tuned

states. Simulation will show that, with this particular situation, tuning

with a simplified sensitivity model is as effective as tuning with a full

model of the plant as the sensitivity model.

SQ
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2. Alternate tuning. This situation involves cooperation between

subsvstems. Subsystems are tuned one after the other in a tuning "run"

through the entire plant. This process is then repeated until successive

tuning runs yield no change in the respective parameters being tuned in each

subsystem controller. The only limitation of this tuning process is that,

while a particular subsystem is being tuned in the midst of a tuning run, the

rest of the plant must be stable.

3. Tuning with the rest of the plant mistuned. This situation, like

Situation 1, does not involve cooperation between subsystems. For the purposes

of this thesis, the term "mistuned" will have the connotation that some

subsystem not being tuned has been detuned to such an extent that the subsystem

being tuned tunes to parameter values different from those arrived at when

using a full model of the plant for the sensitivity model. This situation

arises when one or both of two conditions are met:

(a) The rest of the plant is unstable; or,

(b) The rest of the plant has a natural undamped frequency below

some low frequency which is specific to each overall plant and may be

specific ot each subsystem.

Example: Magnetic suspension system. Consider, again the magnetic suspension

described in Chapter 2. The controller matrix is, again,

1k k ik k
= 11 12 13 14

K 4--

k !kk1I k22  k 2 3  24j

S! :

- -- ~ -
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As before, those elements in the diagonal blocks are associated with local

feedback and the off-diagonal elements govern cross-feedback. Since we are

dealing with decentralized tuning, assume that the off-diagonal terms are

zeros. For the values of the suspension model parameters, assume that a= 1,

m= 2, g= 1, h =1, L= 2,-and that the sampling interval is 50 msec. Tuning0

k ll, k1 2, k2 3, and k2 4 by the sensitivity points method with the full plant

model as the sensitivity model and with a second-order reference step

response (double poles at s=-3.0) results in convergence of parameters to

kl k 1.16 and k k = 0.68. Assume for each subsystem that its1 k2 3  1 2  24

respective simplified sensitivity model is defined by those portions of the

plant's system, control, and output matrices which pertain to that particular

* subsystem and local feedback about that subsystem. For the left subsystem

(Subsystem 1), then, the sensitivity model is defined by

ir
0 1 0

2b -" A

1 = L b 11  k11 j 12_ L

and
S

S = [1 0]

11

The right subsystem (Subsystem 2) sensitivity model is similarly defined.

Detuning Subsystem 1 alone to k = 0.5 and k12 = 1.5 and tuning

result in a demonstration of Situation I (tuning with the rest of the plant

tuned). The sensitivity points tuning procedure yields convergence in 4
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iterations to k = 1.15 and k = 0.69. The tuning history for this tune-up

is shown in the Appendix as Table IV.

Detuning Subsystem 1 to k 0.5 and k2= 1.5, detuning Subsystem 2

11 12

to k2 3 =0.25 and k 0.1, and tuning up the two subsystems in alternate

fashion result in a demonstration of the alternate tuning scenario of

Situation 2. The sensitivity points tuning procedure yields covergence in

16 iterations in 2 "runs" to k ll=1.2, k 12=0.70, k 23=1.11, k 24=0.66. The

tuning history for this tune-up is shown in the Appendix as Table V.

Consider now the case of tuning with the rest of the plant mistuned

(Situation 3). For this example, let us tune Subsystem 1 while Subsystem 2

is tuned to some arbitrary state in order to observe what Subsystem 2 must

be tuned to for it to be considered mistuned. The poles of "the rest of the

plant" in this case are those of Subsystem 2, and may be calculated from the

sensitivity model system matrix of Subsystem 2 (in this particular example).

Now let us assume the following about all of the tune-ups associated with

this particular situation:

1. The tuning reference input to Subsystem 1 is a unit step.

2. The reference response for Subsystem 1 is a unit step response

of a second-order system with poles at s=-3.

3. The disturbance input to Subsystem 2 is 0.5 step delayed by

0.6 sec.

A summary table of initial and final values of k and k
11 12'

corresponding values of k_ and k2,, and corresponding resultant undamped23

natural frequencies of Subsystem 2 is given in the Appendix as Table VI.

Respective tunin,- histories are shown in the Appendix as Table VII. As

can be seen in ibi: ? undamped natural frequencies in Subsystem 2 of 2

. .f
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or above result in k and k converging upon values in the neighborhood
11 12

of those attained when tuning with a full model of the plant as the

sensitivity model, while undamped natural frequencies of 1.414 and below

result in final values which are much different.

S

*?.1

...

K "
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CHAPTER 4

CONCLUSION

A general framework has been presented for the tuning of MIMO

systems by use of the MIMO sensitivity points method. Examination and

computer simulation of the MIMO sensitivity points method have revealed

that, for a system composed of weakly coupled subsystems, decentralized

tuning may be satisfactorily performed even if only simplified sensitivity

models are available for use. In addition, it has been established that,

if the full system model is available for use as a sensitivity model,

exact tuning of a subsystem from the local level is possible, irrespective

of coupling to other subsystems or inputs to other subsystems. One natural

extension of these results which may be of interest for further study is

that of the application of MIMO sensitivity points principles for truly

adaptive (instead of periodic) on-line tuning.

9I

. . -.. . . . . . . . .

* . * . . *. . ... . . * . -
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APPENDIX

TUNING HISTORIES OF TUNING EXAMPLES

TABLE I. CENTRALIZED TUNING EXAMPLE: TUNING HISTORY

FOR THIS RUN: SUBSYSTEM 1 INPUT - UNIT STEP;
SUBSYSTEM 2 INPUT - 0.! STEP.

CROSS-FEEDBACK' GAINS: K<21 AND K<13

ITERATION
I K<2 I K13

-1 *.000 -1 .040000
1-0.91544 -0.79987
2-0.61201 -0.5794.

-0.Z278Z -0.25119
4 -0.07Z16 +0.29346

*5 -0.0447Z +2.06399
6 -0.04061 +2.51908
7 -0.07,874 +2.49974
9 -0.o3907 +2.55895
9 -0.03970 +2.Z3242

10 -0.03889 +2.Z5015
11 -0.03877 +2.53994
12 -0. 03984 +2.54607

'I 2
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TABLE II. DECENTRALIZED TUNING EXAMPLE: ALTERNATING

TUNE-UP TUNING HISTORY

LOCAL FEEDBACK GAINS:
KII AND K12 CORRESPOND TO SUBSYSTEM 1
K-.3 AND K24 CORRESPOND TO SUBSYSTEM 2

ITERATION
I K11 K12 K23 K<24

FOP THIS RUN: REFERENCE INPUT - UNIT STEP:
DISTURBANCE INPUT - 0.5 STEP APPLIED TO

OTHER SUBSYSTEM INPUT.
+1.00 +1.00 +1.00 + 1.00

1 +1.16 +0.69 +1.00 +1.00
•1.15 +0.70 +1.00 +1.00

- +1.15 +0.70 +1. 00 1. 00
4 +1.15 +0.70 +1.17 +0.6a

+1.15 +0.70 +1.15 +0.69
6 -1.15 +. 70 +1.15 +0.69

FOR THIS RUN: REFERENCE INPUT - UNIT STEP;
DISTURBANCE INPUT - 0.5 STEP DELAYED

BY o.6 SEC APPLIED TO INPUT OF
OTHER SUBSYSTEM INPUT.

': +0.6'O +1.40 +2.30 Z0.35
S +0.60 +1.40 +0.14 +i 0

+0 60 +1.40 +0.34 +1.--
+1..60 +1.40 +0.79 +J."

.6 + 1.4) '. 14 " 5
5 +6.60 +1.40 +1.15 +0.70

, ,+ -1. 4f +1. 14 .70
"0 -1.40 +1.14 .0. -0

1. 1') +0.91 +1.14 '0.70
.1.10 +0.67 1. 14 +0. 70

1' * i. 15 +().69 +1.14 +4j.7(o
1 -1.15 *0.69 -1.14 +q. 70

-P 'HIS PILN: REFERENCE INPUT - UNIT STEP DELAYED 9Y
'.6 SEC;

DISTURBANCE INPUT = 0.5 STEP APPLIED TO
OTHER SUBSYSTEM INPUT.

+ .81 -'.70 -").::5ri 1.1 +)? . -:'. :.0 *K''. :-,

" I 0').68 ++. 3;) 0. 35
4-.16 +4. 8 .2. 7o "0. -35"
5 -1. il +1".68 *'. 17.O"

1.1b + . - . 42 1.21
1. I +u) .. 05.
'-] .l~b','0 . 8 t .15" . 7- "

I~. -- -- --- t l .' ....
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TABLE III. DECENTRALIZED TUNING EXAMPLE: JOINT TUNING
TUNING HISTORY

LOCAL FEEDBACK GAINS:
1<11 AND K<12 CORRESPOND TO SUBSYSTEM 1
1<23 AND K<24 CORRESPOND TO SUBSYSTEM 2

ITERATION
.4I 1<11 K12 K<23 K24

FOR THIS RUNs SUBSYSTEM 1 INPUT - UNIT STEP;
SUBSYSTEM 2 INPUT - UNIT STEP DELAYED

BY 0.6 SEC.
0 +0.60 +1.30 +1.60 +0.35
1 +1.(.5 +0.92 +0.95 +0.75
2 +1.12 +0.69 .1.09 +0.68
- +1.112 .0.70 +1.11 +0.66
4 +1.12 +0.70 +1.11 +0.66

FOR THIS RUN: SUBSYSTEM 1 INPUT = UNIT STEP DELAYED
BY 0.6 SEC;

SUBSYSTEM 2 INPUT - 0.6 STEP.
0 +0.60 +1.70 +1.60 +0.35
1 +1.11 +0.84 +0.90 +0.79

2 +1.14 .0.65 +1.05 +0.74
.1.14 +0.67 +1.o9 +0.71

4 +1.14 +0.67 +1.09 +0.71
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TABLE IV. TUNING EXAMPLE FOR DECENTRALIZED TUNING WITH

SIMPLIFIED SENSITIVITY MODELS

FOR THIS RUN: REFERENCE INPUT - UNIT STEP;
DISTURBANCE INPUT - 0.5 STEP APPLIED TO

SUBSYSTEM 2 INPUT;
REFERENCE RESPONSE: SECOND-ORDER STEP

RESPONSE (POLES AT S--3).

LOCAL FEEDBACK GAINS:
-11 AND K12 CORRESPOND TO SUBSYSTEM 1
R23 AND K24 CORRESPOND TO SUBSYSTEM 2

ITERATION
I I11 K12 K23 K-4

C +0.50 +1.50 +1.16 +0.68
1 +1.06 +0.99 1.16 +4.68
2 +1.17 +).66 +1.16 +0°68
. +1.15 +0.70 +1.16 +0. 68
4 +1.15 +0. 69 +1.16 +O.b8

I

I!

~~.-.1



TABLE V. TUNING HISTORY: ALTERNATING TUNE-UP WITH SIMPLIFIED
SENSITIVITY MODEL

FOR THIS RUN: SUBSYSTEM I INPUT - UNIT STEP;
SUBSYSTEM 2 INPUT - UNIT STEP DELAYED

BY 0.6 SEC.
REFERENCE RESPONSES: SECOND-ORDER STEP

RESPONSES (POLES AT S-3).

LOCAL FEEDBACK GAINS:
K11 AND K12 CORRESPOND TO SUBSYSTEM I
K23 AND K24 CORRESPOND TO SUBSYSTEM 2

ITERATION
I KitI K12 K23 K24

1) +0.50 +1.50 +0.25 +0.10
1 0.47 +1.18 +0.25 +0.10
2 +0.48 .1.23 0.25 +0.10
3 .48 +1.23 0.25 +0.10
4 +0.48 .1.23 0.28 +0.22
5 0.4e .1.23 +0.35 +0.42

+0.48 +1.23 .0.49 +0.66
7 0.48 +1.23 .0.72 +0.83
a 0.48 +1.23 .0.97 0.79
9 +0.48 .1 + 23 +1.07 +0.70

1) +0.48 +1.23 +1.07 0.70
11 -0.89 +I.0& 1.07 0.70
1- +1.12 +0.73 +1.07 +0.70

+1.12 +0.70 +1.07 .0.70
14 +1.12 +0.70 .1.07 +0.70
15 +1.12 +0.70 +1.11 0.66
16 +1.12 .0.70 +1.11 +0. 6

0-
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TABLE VI. DECENTRALIZED TUNING EXAMPLE: SUMMARY TABLE OF
RESULTS FROM VARIOUS TUNINGS

SUBSYSTEM I SUBSYSTEM 2

; UNDAMPED
FEEDBACK GAINS FEEDBACK GAINS SUBSYSTEM POLES NATURAL

INITIAL FINAL* 1 FREQUENCY
s KU Kil K23 K-24 S - (RAD/S)
K12 K1i2

().50 0.85 0 025 0.10 -1.00 1 1.00'
1. 50 .93 -1.00

.0o0 0.87 0.30 0.00 + j1.414 1.414
0.30 0.82 -- j1.414

.00 1.09 0.50 0.o0 1 j2.449 2.449
J.30 0.68 -j2.449

0.50 ', 1.04 0.40 0.0 +j 2.000 :2. 00)
1.50 0.69 -j2.000

0.50 1.05 0.40 0.141 -1.414 + j1.414 2.000
1.50 0.73 1 -1.414 - ji.414

0. 50 1.06 1 0.40 0.20 1 -2.000 2. ()00
1.5o) 0.74 1 -2.000

WITH A FULL PLANT AS SENSITIVITY MODEL,
FINAL K11 = 1.i. FINAL K12 = 0.69.

I.



64

TABLE VII. DECENTRALIZED TUNING EXAMPLE: TUNING HISTORIES FOR
VARIOUS TUNINGS

FOR THESE RUNS: SUBSYSTEM 1 INPUT - UNIT STEP;
SUBSYSTEM 2 INPUT - 0.5 STEP DELAYED

BY 0.6 SEC.
REFERENCE RESPONSES: SECOND-ORDER STEP

RESPONSES (POLES AT S-3).

LOCAL FEEDBACK GAINS
Kll AND K12 CORRESPOND TO SUBSYSTEM 1
K23 AND K24 CORRESPOND TO SUBSYSTEM 2

ITERATION
I Kll K12 K23 K24

0 +0.50 +1.50 +0.25 +0.10
1 +0.87 +1.00 +0.25 +0.10
2 +0.85 +0.93 +0.25 +0.10
3 +0.85 +0.93 +0.25 +0.10

0 +2.00 +0.30 +0.30 0.00
1 0°006 +0.83 +0.30 0.00
2 +0.05 +1.23 +0.30 0.0

to.39 +1.31 +0.30 0.00
4 +0.93 +0.91 +0.30 o.oo
5 +0.98 +0.79 +0.30 0.00
6 +O.87 +0.82 +0.30 0.00
7 +0.87 +0.82 +0.30 0.00

0 +2.O0 +0.30 +0.50 0.00
1 +0.50 +0.79 +0.50 0.0o

2 +0.77 +0.90 +0.50 0.00
7 +1.03 +0.76 +0.50 0.o0
4 4'1.')9 +0.67 +0.50 0. 00
5 +I.09 +0.68 +0.50 0.00

+1.09 +0.69 +0.50 u.00)

0 +0.50 +1.50 +0.40 0. 00
1 +1.09 +0.76 +0. 40 0. 0
2 +1.0'.)4 +0.68 +0.40 0.00
.' +1.04 +0. 69 +0.40 1). 00
4 +1.04 +1,.69 +0.40 0.0o0

+ .). 50 +1.50 +0.40 *,. 14
1 + .04 +0.92 +0.40 +0.14

+1.O6 +0.71 +0.40 +0.14
+1.05 +0.73 +0.40 +0.14

4 +1.05 +0.7Z +0.40 +0.14

+0. 50 +1.50 +0.40 +q). 20
1 "1. 0z +0.94 +o. 40 +0.20
z + 1. 07 +0.72 +0.40 +().20
. +1.0')6 -0. 74 +0.40 +0. 20

4 +1.-)6 +0.74 +0.4) 9.2

x -.- - .
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